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ABSTRACT

This paper proposes a new difference-based estmatiethod for estimating the semi parametric pdytilnear model

(PLM). This method is called the difference fofaténce (DFD) estimation method, which is propdsgdhe author, for
estimating the residual variance in nonparametegmession models. In this work, the DFD estimatiwthod is used for
estimating both the parametric component and tisedteal variance. A numerical study has been shdwahthe proposed
DFD estimation gives best results compared to oéxésting difference methods; in the form of lesamsquared error of

parametric component and less residual varianceheffitted model.
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INTRODUCTION

A patrtially linear regression model (PLM) is a wklown semi parametric regression model, which a@ost both
parametric and non-parametric components. Diffesstimation schemes are used in estimating PLMh ssckernel
smoothing, spline smoothing, and difference-basethad. (See for kernel and spline smoothing meth&iserman
(1985), Engle et al., (1986); Heckman (1986); Rebin (1988); Speck man (1988); Buja et al., (198&stie and
Tibshirani (1990); Wahba (1990); Severini and Wé&h@02); Zhou et al (1998); Opsomer and Ruppert 9];.96ardle et
al., (2000; and 2004); Muller (2001); Ruppert et §2003); and Holland (2017)). (See for differeth@sed method:
Yatchew (1997; and 2003); Liu (2010); Wang et@Q11); and Zhou et al. (2018). The interest is thork, is to use the

difference-based estimation approach for estimatieg®?LM.

Consider the following partially linear model (PLM)
Y:XTIB'l‘f(U)'l‘{:‘, )

whereX is an(nxp) matrix of regressors in the parametric compondrihe model, U is arinxq) matrix of
regressors in the nonparametric compongnts a(px1) vector of unknown parameterf§lJ) is an unknown function
(a nonparametric function) from%Ro R, £is an independent vector of random errors with mearo and finite
varianceg?. A PLM in (1) is a semiparametric model since dntains parametric and nonparametric components.

PLM is a preferred regression model than a fullyapzetric model and a fully nonparametric one, siRté is a
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16 Magda M. M. Haggag

more flexible than the first one and combat theseuof dimensionality which is a well-known probleim
nonparametric regression models. The differencémasion method is based on removing the nonparametr
component of PLM in (1), i.e., removing the functigU). The differencing method will be applied to estim&oth

the parametric componerit, and the residual varianeg?.

The difference-based estimation is applied to thieparametric model to estimate the residual vagiahiall et al.,
(1990), proposed a new difference sequence toastitine residual variance. This sequence is dhledptimal sequence, since
it is derived by minimizing the asymptotic meanaguerror of the difference variance.The optimglsece is computed for
m=1,2,...,1(y Hall et al., (1990), and their outputs willdeveloped, in this work, to estimate the PLM.

Dette et al., (1998) introduced a difference segaemhich is called the ordinary difference sequengéiall et
al., (1990). This sequence is used for numeridédmdintiation and employed to reduce the bias ialseample sizes. The
ordinary sequence will be developed for estimatiregPLM.

Haggag (2019), proposed new difference estimatiorinie residual variance in nonparametric regrassialled the
difference-for-difference (DFD) estimation methdtie DFD method gave best results for the nonparamegression, and will

be developed in this work for estimating the PLMeThree difference sequences will bedevelopedamgared for the PLM.

The rest of this paper is organized as followsiseqf2) presents the difference-based estimatiotihaakfor the
partially linear model (PLM), and its various diféeice sequences. Section (3) introduces the prdpdifference-for-
difference estimation for PLM and its theoreticabgerties. Section (4) considers the simulatiortunder different

settings. The conclusions of this work are preskinteection (5).
The Difference-Based Estimation for Partially Linea Models

Yatchew (1997; and 2003) proposed the differencethastimation method to estimate the PLM. Theerast was on
estimating the parametric component of the model, they showed that using higher difference orberrtonparametric
componenf(Z)will be removed. Also, they found that the relatafficiency of the estimator converges to the asytip

efficiency, when using higher differences.

Wang et al., (2011) proposed a difference-basedoaph for estimating the PLM. This approach is dase
differencing the parametric component, then estimathe nonparametric one using by using any nampetric method

such as kernel or wavelet.

Differencing the Data Give the Following First-Difference Equation

Yise ™Y = (Xi+1 X ):8+[f (ui+1)_ f (ui )] T &~ & =120 )

From (2), the i difference order can be generalized as follows:

DI {zdi)@i)g*ljﬁjdej o)+ D d ., =m me, o1 3
i=0 i=0 i=0 j=0

where, djis the j™ difference sequence f¢r0,1,2,...,m The first order difference is defined ak={do,d} the
second order difference islh-{do,d;,d,},...,and them order differences id;,-{do,d1,0>,...,d}. The estimation of (3) is

based on a difference sequence of real nun{@e}ﬁs: 012...m, With two constraints as follows:
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Difference for Difference Estimation Method for Semiparametric Partially Linear Regression Models 17
n 4
> d =0, (4)
Ydi=1
j=0

where m is the order of the differences.Accordioghe constraints in (4), the first-order sequewidebe as

follows for all difference methods:

{dj}:{do,dl}:{é,g} )

The Following Assumptions will be considered thgbaut the Working in this Paper.

Assumption 1: The design points of u are equidistant suchulhatl, 1<i<n.

n
Assumption 2: The error term&; in (1), is an independent and identical (iid) disited with mean=zero, and variance=
o2, with E(£2)< oo, and aIso,E(£4)-< 00,

Assumption 3: It is assumed that the maximal distance betweery &amo adjacent observations, i.e.,

mayu,,, — | = O(%)

Assumption 4: The nonparametric functiorf (U) in (1) has a bounded first derivative.

The difference sequences differ according to tipe tyf differences. Three types of difference seqesmwill be

considered in this paper as follows.

The Difference Sequence of Hall Et Al. (1990)

Hall et al. (1990) proposed a difference sequeratled the optimal sequence, they used it in estimgathe residual
variance in nonparametric regression and they fabatthe optimal sequent{dj} :{do, dl,...,dm} can be obtained by

minimizing the following quantity:

J:i[ik dd MJZ ’ (6)

=1\ j=0

And the numerical sequences are computed accotdirtge constraints in (4) as shown in Table (1)eSéh

sequences will be developed, in this work, forneating the PLM as “Hall sequences”.

Table 1: The Computed Difference Sequence of Halt al., (1990)
M Optimal Sequence(do,dl,...,dm)

(0.7071,-0.7071)

(0.8090,-0.5000,-0.3090)

(0.1942,-0.2809, 0.3832,-0.8582)

(0.2708,-0.0142, 0.6909,-0.4858,-0.4617)

(0.9064,-0.2600,-0.2167,-0.1774,-0.1420,-0.1103)

(0.2400, 0.0300,-0.0342, 0.7738,-0.3587,-0.3038472)

(0.9302,-0.1965,-0.1728,-0.1506,-0.1299,-0.1100930,-0.0768)

(0.2171, 0.0467,-0.0046,-0.0348, 0.8207,-0.2860453,-0.2260,-0.2879)

(0.9443,-0.1578,-0.1429,-0.1287,-0.1152,-0.1@28905,-0.0792,-0.0687,-0.0588)
10 (0.1955, 0.0539, 0.0104,-0.0140,-0.0325, 0.8512884,-0.2079,-0.1882,-0.1830)

Source: Hall et al., (1990).

OO N[OOI [(WIN|F
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18 Magda M. M. Haggag

The Difference Sequence of Dette Et Al., (1998)

Dette et al. (1998) introduced the following difface sequence:

Table 2: The Computed Difference Sequence of Deté al., (1998)
Ordinary Sequence(do,dl,...,dm)

<

(0.7071,-0.7071)

(0.4082,-0.8165,0.4082)

(0.2236,-0.6708, 0.6708,-0.2236)

(0.1195,-0.4780, 0.7170,-0.4780, 0.1195)

(0.0630,-0.3145, 0.6299,-0.6299, 0.3150,-0.0630)

(0.0329,-0.1974, 0.4935,-0.6580, 0.4935,-0.1070B29)

(0.0171,-0.1195, 0.3591,-0.5985, 0.5985,-0.364111,95,-0.0171)
(0.0088,-0.0704, 0.2464,-0.4928, 0.6160,-0.4028}64,-0.0704, 0.0088)
(0.0045,-0.0405, 0.1620,-0.3780, 0.5670,-0.5673%80,-0.1620, 0.0405,-0.0045)
0 | (0.0023,-0.0230, 0.1035,-0.2760, 0.4830,-0.509830,-0.2760, 0.1035,-0.0230, 0.0023)

PO NO|TARIWIN|F

d, :(_1),-[2mj‘;(rﬁj ,i=0,1,2, ,m e

m I

The sequencs, in (7), is called the ordinary difference sequebgddall et al., (1990). This sequence is employed
to reduce the bias in small sample sizes.The orglsequence is computed according to the cons$raint4) as shown in

Table (2). These sequences and will be developeatliis work, for estimating the PLM as “Dette Semges".

Haggag (2019) New Optimal Difference Sequence

Haggag (2019) proposed the difference-for-diffeee(i@-D) method for estimating the residual variaimceonparametric

regression, and the corresponding DFD sequenceiiglfto be as follows:

(—1)j+2(m* )_é , j=0m

0, =) (mlm) 2, =120 (m-1) @
0, otherwise

and for even m is found to be:

(7 ()=, i=om
0, ={ (-0 mm )z, j= 12 (m-1) ®
0, otherwise

where,
m’ = |m?(m-1)+2] 10)

Impact Factor (JCC): 4.9784 NAAS Rating 3.45
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Table 3: The Computed DFD Sequence of Haggag (2019)
Dfd Sequence(do,dl,...,dm)

<

(0.7071,-0.7071)

(0.4082,-0.8165,0.4082)

(0.2236,-0.6708, 0.6708,-0.2236

(0.2828,-0.5657, 0.5657,-0.5657,0.2828)

(0.0990,-0.4951, 0.4951,-0.4951, 0.4951,-0.0990)

(0.2223,-0.4447, 0.4447,-0.4447, 0.4447 -0.44227B)

(0.0581,-0.4068, 0.4068,-0.4068, 0.4068,-0.4068)68,-0.0581)
(0.1886,-0.3771, 0.3771,-0.3771, 0.3771,-0.3074771,-0.3771, 0.1885)
(0.0392,-0.3530, 0.3530,-0.3530, 0.3530,-0.363&K30,-0.3530, 0.3530,-0.0392)
0 | (0.1665,-0.3330, 0.3330,-0.3330, 0.3330,-0.383B30,-0.3330, 0.3330,-0.3330, 0.1665)

PlO|ONO|OARWIN|F

The DFD sequences in (8) and (9) are derived tisfgathe two constraints in (4), and shown in taf3g.

When m=1, the DFD sequence in (8) will be the uaiqequencedj in (5). For m=2, the DFD sequence in (8) will
be the ordinary sequenc{éj as shown in Table (2). Also, fon=3, the ordinary sequence and the DFD sequeﬂl’ﬁce

are coincident as shown in Table (2). It is fouhdttthe ordinary sequence and the DFD sequed]cdiffer form

>3. (See Tables (2) and (3)
Estimating the Partially Linear Models Using the Diference approach

Consider the PLM defined in (1), the generalizetedénce equation in (3) can be written as:
Y=X"B8+fU)+Z, (10)
where,

V =AY, )Z =AX,m and€ =AE.Ais an (n-mX n matrix of differences defined as:

d d d .d, 00 0
0ddd ... d 00 0
A '

000 . . .. éodldz.dmé
looo . ... 4 d . . d

whered,, d;, &,,...,d, are the differencing weights satisfying the caamists in (4).

According to assumptions 1:4, the difference maa€10) can be written as:

Y=X"B+E, (11)
The difference estimator gf is defined as follows:

Bdiff )= (XX )XY, 12)

where X is an (n-m p matrix of design points on regressors, ahis an (n-m)X 1 vector of response variable.

Also, the residual variance can be written as:

www.iaset.us editor @ aset.us



20 Magda M. M. Haggag

&2(diff )=YT PY /(n-m~-p), (13)

where P is an (n-n¥ (n-m) matrix such that:

P=1-X(X"X)*X", (14)

And | is an (n-m)X (n-m) identity matrix. The estimator of the parantetomponentsf, and the residual
variance will differ according to the type of thiference sequence. Therefore, three differendenasirs will be obtained
and compared as follows:

. ,[AB’(Opt) and g2 (Opt) using the optimal sequences in table 1.
. ,@(ord) and & (Ord) using the ordinary sequences in table 2.

A

. ﬁ(DFD) and 5‘2(DFD) using the optimal sequences in table 3.

Theorem 1

Consider the assumptions 1:4 and the DFD sequer(@,iwhich computed in table (3), then:
A(DFD) - N(B.A)
WhereA is the covariance oi?(DFD) defined as:
A =02(1+ zkzrzllafj(xTx)’1
6*(DFD) 1P - o?.

The Proof in Appendix (A).

A Simulation Study

Simulation Design

To study the effect of the difference sequencel@ndstimation of PLM, three estimators ﬁwill be considered as

follows:
. ﬁ’(HaII) which uses the sequences of Hall et al. (1990) shoWable (1).
. ﬁ’(Dette) which uses the sequences of Dette et al (1998) slmWwable (2).
. ,B(DFD) which uses the sequences of Haggag (2019) shoWalile (3).

Two sample sizes are used: n=50, and 200. The p&eamectorﬂ= (0.2, 0.3, 0.5), an&; ~ Uniform (0, 1)

The nonparametric function used in this studffu3= 2 Sin (wtu), which used by Zhou et al., (2018), with weights W,

2, 4, and 6, which represents the smoothnesupfand presented dg f,, f; and §. Also, the design points are chosen

equidistant such tha;g :i, for i=1, 2,...,n. the errors are generated such ﬂ’pa{N(O,l). The procedures are repeated
n

1000 times and the average MSE of each parametsraésr is computed for[?(HaII),,[S’(Dette), and ,fS’(DFD). Also,

Impact Factor (JCC): 4.9784 NAAS Rating 3.45



Difference for Difference Estimation Method for Semiparametric Partially Linear Regression Models 21

the residual sum of Squares for different modets@esented. The results are recorded for 240 mwotteke different
estimation methods ¢, four nonparametric function f(u) according to ttdue of w, ten difference sequences m, and two

sample sizes, i.e. (3x4x10x2=240 models).

Simulation Results

Simulation Results of the Difference Estimator oB

The effect of the proposed difference sequenceduated by Haggag (2019), on the estimation ofthk! is considered
and compared with the two difference sequencesduoted by Hall et al., (1990), and Dette et al 8)9%he results are
shown in Tables (4): (7) and Figures 1:8, for thguences ¥ m< 10 and for the sample sizes, n = 50 and n = 20@&/W
n=50, best results are obtained, in the form of MSE, for DFD when £ m< 7 and for all values of weight for f(u). Bad
results are obtained, in the form of large valueM8E, for Hall especially when m = 4, 10, and W,/and when m = 4, 8,
10, and w = 2, 4, 6. Best results are obtainedDigite when m < 7, and for values of w. when n=20BD gave best

results compared to Hall and Dette foer, and for all values of w =0, 2, 4, and 6.

Table 4: The Mean Squared Error (MSE) of the Parameter Vecto B, in the PLM, Using g(Hall), 3(Dette

and /?(DFD)- The Results are Recorded of Order ¥ M < 10, Four Weights (0,2,4,6) for the Nonparametric
Function F (U), and Sample Size N =50

Difference 2

order MSE of {Hall) MSE of 3(Dertd MSE of (DFD)

(m)

Jo fo S Je Jo fo J Je Jo fo S Je

1 0.0261 | 0.0228 | 0.0198 | 0.0171 | 0.0261 | 0.0228 | 0.0198 | 0.0171 | 0.0261 | 0.0228 | 0.0198 | 0.0171
2 0.0367 | 00240 | 0.0144 | 0.0077 | 00208 | 0.0208 | 0.0216 | 0.0208 | 0.0208 | 0.0208 | 00210 | 00216
3 01145 | 00356 | 0.0038 | 0.0005 | 00035 | 0.0035 | 0.0034 | 0.0020 | 0.0035 | 0.0035 | 00034 | 00029
3 02576 | 01429 | 0.0826 | 0.0704 | 00126 | 00126 | 00127 | 0.0120 | 775 | 92e-5 | 00002 | 00008
5 01213 | 00495 | 00146 | 0.0037 | 00292 | 0.0293 | 00293 | 0.0293 | 00033 | 00125 | 00225 | 00249
6 0.0192 | 00136 | 00119 | 0.0150 | 01303 | 0.0086 | 0.0105 | 0.0298 | 0.0013 | 0.0011 | 0.0004 | 64e-5
7 00249 | 00250 | 0.0251 | 00250 | 00397 | 0396 | 0.0391 | 0.0396 | 0.0035 | 0.0002 | 0.0016 | 37e5
8 0.0238 | 0.6972 | 0.6274 | 0.0912 | 0.0397 | 0.0256 | 0.0257 | 0.0256 | 0.1817 | 0.1859 | 02081 | 02395
9 0.0928 | 0.0034 | 0.0021 | 1.7e-5 | 0.0404 | 0.0404 | 0.0404 | 0.3356 | 03336 | 0.2105 | 02216 | 03825
10 | 04708 | 17117 [ 07312 | 01454 | 02421 | 02421 ] 02421 | 02421 | 02967 | 03015 | 03219 | 03351

The mean squared error (MSE) of the parameter vector [, in the PLM, using The
methods of Hall, Dette, and DFD, with n=50, and weigth w=0 for f{u).

0.5

W1SE

1 2 3 4 5 3 7 8 9 10 M
DFD

Figure 1: The Mean Squared Error (MSE) of the Paraneter Vector B, in the PLM, Using the
Methods of Hall, Dette, and DFD, With N = 50 and Wight W = 0 For F (U).

www.iaset.us editor @ aset.us



22 Magda M. M. Haggag

The mean squared error (MSE) of the parameter vector B, in the PLM, using The
methods of Hall, Detts, and DFD, with n=50, and weigth w=2 for f{u).

M1 SE
.

m
1 2 3 - - _5_ . Haﬁ ...... ? De%te ° E)[IED

Figure 2: The Mean Squared Error (MSE) of the Paraneter Vector B, in the PLM, Using
the Methods of Hall, Dette, and DFD, with N = 50 ath Weight W = 2 for F (U).

The mean squared error (MSE) of the parameter vector [, in the PLM, using The
methods of Hall, Dette, and DFD, with n=50, and weigth w=4 for f{u).

0.8
0.6
A
D.-’-]-E
0.2
0 "‘":—I——
1 2 3 4 5 6 7 8 9 10 m

Figure 3: The Mean Squared Error (MSE) of the Paraneter Vector B, in the PLM,
Using the Methods of Hall, Dette, and DFD, with N 50 and Weigth W = 4 for F (U).

The mean squared error (MSE) of the parameter vector j, in the PLM, using The
methods of Hall, Dette, and DFD, with n=50, and weigth w=6 for f{u).

0.6
0.4 .,
[%5]
=
0.2
0
1 2 3 il 5 6 7 ) g 10 m
[ — Ha" ........... De-t-te DFD

Figure 4: The Mean Squared Error (MSE) of the Paraneter Vector B, In The PLM, Using
the Methods of Hall, Dette, and DFD, with N = 50 ath Weight W = 6 for F (U).
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Table 5: The Mean Squared error (MSE) of the Paramier Vector B, in the PLM, using,é(HaII ) , ,@’(Dette) and

B(DFD). The Results are Recorded for Difference SequencesOrder 1 <m< 10, Four Weights (0, 2, 4, 6) for
the Nonparametric Function f(u), and Sample Size & 200

1 0.0085 | 0.0074 | 0.0079 | 0.0085 | 0.0085 | 0.0074 | 0.0079 | 0.0085 | 0.0085 | 0.0074 | 0.0079 | 0.0085
2 0.0034 | 0.0039 | 0.0043 | 0.0048 | 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0200
3 0.0684 | 0.0684 | 0.0684 | 0.0684 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625
3 0.0328 | 0.0436 | 0.0555 | 0.0684 | 0.0248 | 0.0248 | 0.0248 | 0.0248 | 0.0028 | 0.0028 | 00028 | 0.0029
5 0.0004 | 4.7e-5 | 0.0010 | 0.0032 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0008 | 0.0007 | 0.0005 | 0.0004
6 0.0004 | 0.0036 | 0.0029 | 0.0023 | 0.0054 | 0.0097 | 0.0152 | 0.0152 | 0.0012 | 0.0012 | 0.0012 | 0.0013
7 0.0372 | 0.0052 | 0.0053 | 0.0052 | 0.0067 | 0.0067 | 0.0067 | 0.0067 | 0.0015 | 0.0012 | 0.0010 | 0.0008
8 0.0372 | 0.0311 | 0.0258 | 0.0218 | 0.0053 | 0.0053 | 0.0053 | 0.0053 | 0.0009 | 0.0010 | 0.0010 | 0.0010
9 0.0012 | 0.0001 | 0.0028 | 0.0087 | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 0.0024 | 0.0015 | 0.0008 | 0.0004
10 0.0197 | 0.0282 | 0.0370 | 0.0445 | 0.0029 | 0.0029 | 0.0029 | 0.0029 | 0.0044 | 0.0045 | 0.0045 | 0.0046

The mean squared error (MSE) of the parameter vector B, in the PLM, using The
methods of Hall, Dette, and DFD, with n=200, and weigth w=0 for f{u).

0.1

&
0.055

Figure 5: The Mean Squared Error (MSE) of the Paraneter Vector B, In The PLM, Using the
Methods of Hall, Dette, and DFD, with N = 200, andVeight W = 0 for F (U).

adT gnizu MI9 adt i § wohavatameisq adt 3a (32M) 16112 hareup2 neam adT
Jult 1ot S=w digisw bne 008=ndtiw 030 bne 54120 llsH to zhorism

L0

A 2E

m 0r e 8 Iy d Z
a3a atfa(] weee lH= = = =

Figure 6: The Mean Squared Error (MSE) of the Paraneter Vector B, in the PLM, Using the
Methods of Hall, Dette, and DFD, with N = 200, andVeight W = 2 for F (U).
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24 Magda M. M. Haggag

The mean squared error (MSE) of the parameter vector B, in the PLM, using The
methods of Hall, Dette, and DFD, with n=200, and weigth w=4 for f{u).

Figure 7: The Mean Squared Error (MSE) of the Paraneter Vector B, in the PLM, Using the
Methods of Hall, Dette, and DFD, with N = 200 and Wigth W = 4 For F (U).

The mean squared error (MSE) of the parameter vector f§, in the PLM, using The
methods of Hall, Dette, and DFD, with n=200, and weigth w=6 for f{u).

1 2 3 4 5 5 7 8 g 10 m
[ — Ha" ........... DETtE DFD

Figure 8: The Mean Squared Error (MSE) of the Paraneter Vector B, in the PLM, Using the
Methods of Hall, Dette, and DFD, with N = 200, andVeight W = 6 for F (U).

Table 6: The Estimated Varianced?for the Three Fitted PLM Using Different Parametric Estimation

Methods,é(HaII) , B(Dettd and 3(DFD), and Using the Nonparametric FunctionF (U) with Four Different

Weights (0, 2, 4, 6). The Results are Recorded fDifference Sequences of Order ¥ M < 10, Four
Weights (0, 2, 4, 6) for the Nonparametric Functior (U), and Sample Size N = 50

w

13 2.28 159 4]12 3.12.28 1.59
73 01.14 1/04 1}18 31.71.14 1.04

4.12| 3.13 2.2 1.59 4.1
8.30| 6.08 4.27 2.89 11
245| 174 12.4 9.51 5.0
19.2 | 135 10.1 9.39] 119
147 | 875/ 5.05 3.34 137
2.99| 058 0.18] 1.05] 31.8
13.2 ] 599 2.80| 2.28 12.6
2.16| 0.09] 0.19] 4.39] 12.6
122 | 407/ 175 2.0 6.2
0.74] 0.19] 0.26] 9.59 2.9

[

8.9¢- 5.0p- 8.%9e-
2119 2.06 1.78
.9028 1.59 1.65
1414 Q. 0.12 0.09
.0307 0 0.09 0.06
08 8 (0.00.09 0.12
13 0.06.07 0.16
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Figure 9: The Estimated Variance 8 for the three Fitted PLM using Different Parametric Estimation

Methods,,@(Dette) and ,é(DFD), and using the Nonparametric Functiorf(u) with Four Different

Weights (0, 2, 4, 6). The Results are Recorded fBifference Sequences of Order<dm <10, Four Weights
(0, 2, 4, 6) for the Nonparametric Functiorf(u), and Sample Size n=50.

Table 7: The Estimated Varianced?for the three Fitted PLM Using Different Parametric Estimation Methods

,B(Hall ),[3’(Dette) and3(DFD), and Using the Nonparametric FunctionF (U) with Four Different Weights (0, 2,

4, 6). The Results are Recorded for Difference Segnces of Order 1< M < 10, Four Weights (0, 2, 4, 6) for the
Nonparametric Function F (U), and Sample Size N =D

0.897| 1.021] 0.958 0.897 0.89y 1.021 0.958 0.§97.8970 | 1.021 | 0.958| 0.897
1.76 | 1.63| 150| 0.38 0.0003 0.0003 0.0003 0.0008003| 0.0003 0.0008 0.0003
031 | 031] 031 031 0.039 0.039 0.039 0.089 0.03®039 | 0.039| 0.039
065 | 052 | 040 030 0911 o091 0.911 0911 0.045045 | 0.045| 0.045
236 | 205] 1.76] 049 181§ 1.81 1.818 1.818 0.15%175 | 0.193| 0.212
1.12 | 0.87| 0.66] 0.49 1333 0.91 0.584 0.3B4 0.04m046 | 0.046 | 0.046
247 | 205| 1.66| 1.34 4.051 4.05 4.0 4.0p1 0.021024 | 0.028 | 0.031
544 | 471 | 4.08| 3.59 4.48% 4.48 4485 445 0.008009 | 0.009 | 0.009
258 | 203 | 1.57| 1.19 4.260 4.26 4.260 4.260 0.00B005 | 0.007 | 0.009
048 | 0.25| 0.10] 0.04 3.613 3.61 3.613 3.613 10.000.001 | 0.001] 0.001
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Figure 10: The Estimated Variance o for the three Fitted PLM using Different Parametric Estimation

Methods ,é’(Hall),,@(Dette) and ,[}(DFD), and using the Nonparametric Functionf (u) with Four Different

Weights (0, 2, 4, 6). The Results are Recorded fDifference Sequences of order £ m < 10, Four Weights
(0, 2, 4, 6) for the Nonparametric Function F (U)and Sample Size n = 200.

Simulation Results for the Residual Variance Estimgor
The residual variance estimatérz(diff) is computed for each method, Hall, Dette, and DB@.comparingﬁz(diff)
for the three methods, it is found that best resate obtained, in the form of less vaIues&%(diff), for DFD method.

Tables (6), and (7), and also Figures (9), and $b@w that DFD method has less vaIuesﬁﬁ(diff)compared with the

other two methods, Hall and Dette, for all samjesand all difference sequences: (h < 10).

CONCLUSIONS

This paper considers estimating the partially lineeodel PLM using the difference method. The pregodifference
sequence which is called DFD method is applied wéstimating both the parameter vediaand the residual variance of
the fitted PLM. The results of DFD method are coragawith those of Hall method (Hall et al., 1998)d Dette method
(Dette et al., 1998). Best results are obtaingdvor of the DFD, in the form of less values of M&E of the estimatefl,
and less values of the residual variance of thedfitPLM. In the future, this method will be deveddpfor other

semiparametric regression models.
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Appendix (A)

Proof of Theorem 1

Var(,[?(diff )):Var(()zT)Z)_l)ZTE) ~ 02(1+ ZiéfJ(XTX)_l,(See remark 5 in Wang et al., (2011)),
k=1

where i, for k=1,2,....m

OA—Z(DFD)Zml—p:(T_)ziT'é)
— A 2
S
1 1
n-m- pgg' +Op(ﬁj

by \/ﬁ -consistency of,[?.

" 1 nm—m m - 1
06%(DFD)= 2g2 =
&*(oFo) n-m- p.:léd'g' +O"(nj
1 n—m m - 1
= d?c2+0 | =
n-m-péé i "(nj

6*(DFD) P - o2
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