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ABSTRACT 

This paper proposes a new difference-based estimation method for estimating the semi parametric partially linear model 

(PLM). This method is called the difference for difference (DFD) estimation method, which is proposed by the author, for 

estimating the residual variance in nonparametric regression models. In this work, the DFD estimation method is used for 

estimating both the parametric component and the residual variance. A numerical study has been shown that the proposed 

DFD estimation gives best results compared to other existing difference methods; in the form of less mean squared error of 

parametric component and less residual variance of the fitted model. 
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INTRODUCTION 

A partially linear regression model (PLM) is a well-known semi parametric regression model, which contains both 

parametric and non-parametric components. Different estimation schemes are used in estimating PLM, such as kernel 

smoothing, spline smoothing, and difference-based method. (See for kernel and spline smoothing methods: Silverman 

(1985), Engle et al., (1986); Heckman (1986); Robinson (1988); Speck man (1988); Buja et al., (1989); Hastie and 

Tibshirani (1990); Wahba (1990); Severini and Wang (1992); Zhou et al (1998); Opsomer and Ruppert (1999); Hardle et 

al., (2000; and 2004); Muller (2001); Ruppert et al., (2003); and Holland (2017)). (See for difference-based method: 

Yatchew (1997; and 2003); Liu (2010); Wang et al., (2011); and Zhou et al. (2018). The interest in this work, is to use the 

difference-based estimation approach for estimating the PLM. 

Consider the following partially linear model (PLM), 

( ) εβ ++= UfXY T
,              (1) 

where X is an (nxp) matrix of regressors in the parametric component of the model, U is an (nxq) matrix of 

regressors in the nonparametric component, β  is a (px1) vector of unknown parameters, f(U) is an unknown function 

(a nonparametric function) from Rq to R, ε is an independent vector of random errors with mean zero and finite 

variance 2σ . A PLM in (1) is a semiparametric model since it contains parametric and nonparametric components. 

PLM is a preferred regression model than a fully parametric model and a fully nonparametric one, since PLM is a 
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more flexible than the first one and combat the curse of dimensionality which is a well-known problem in 

nonparametric regression models. The difference estimation method is based on removing the nonparametric 

component of PLM in (1), i.e., removing the function f(U). The differencing method will be applied to estimate both 

the parametric component, β, and the residual variance 2εσ . 

The difference-based estimation is applied to the nonparametric model to estimate the residual variance. Hall et al., 

(1990), proposed a new difference sequence to estimate the residual variance. This sequence is called the optimal sequence, since 

it is derived by minimizing the asymptotic mean square error of the difference variance.The optimal sequence is computed for 

m=1,2,…,10 by Hall et al., (1990), and their outputs will be developed, in this work, to estimate the PLM. 

Dette et al., (1998) introduced a difference sequence which is called the ordinary difference sequence by Hall et 

al., (1990). This sequence is used for numerical differentiation and employed to reduce the bias in small sample sizes. The 

ordinary sequence will be developed for estimating the PLM. 

Haggag (2019), proposed new difference estimation for the residual variance in nonparametric regression, called the 

difference-for-difference (DFD) estimation method. The DFD method gave best results for the nonparametric regression, and will 

be developed in this work for estimating the PLM. The three difference sequences will bedeveloped and compared for the PLM.  

The rest of this paper is organized as follows section (2) presents the difference-based estimation method for the 

partially linear model (PLM), and its various difference sequences. Section (3) introduces the proposed difference-for-

difference estimation for PLM and its theoretical properties. Section (4) considers the simulation study under different 

settings. The conclusions of this work are presented in section (5). 

The Difference-Based Estimation for Partially Linear Models 

Yatchew (1997; and 2003) proposed the difference-based estimation method to estimate the PLM. Their interest was on 

estimating the parametric component of the model, and they showed that using higher difference order the nonparametric 

component f(Z)will be removed. Also, they found that the relative efficiency of the estimator converges to the asymptotic 

efficiency, when using higher differences. 

Wang et al., (2011) proposed a difference-based approach for estimating the PLM. This approach is based on 

differencing the parametric component, then estimating the nonparametric one using by using any nonparametric method 

such as kernel or wavelet.  

Differencing the Data Give the Following First-Difference Equation 

( ) ( ) ( )[ ] iiiiiiii ufufxxyy εεβ −+−+−=− ++++ 1111 , i=1,2,…,n        (2) 

From (2), the mth difference order can be generalized as follows: 
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where, djis the jth difference sequence for j=0,1,2,…,m. The first order difference is defined as: d1={d0,d1},the 

second order difference is: d2={d0,d1,d2},…,and the m order differences is:dm={d0,d1,d2,…,dm}. The estimation of (3) is 

based on a difference sequence of real numbers{ } mjd j ,...,2,1,0, = , with two constraints as follows: 
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where m is the order of the differences.According to the constraints in (4), the first-order sequence will be as 

follows for all difference methods: 
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 The Following Assumptions will be considered throughout the Working in this Paper. 

Assumption 1: The design points of u are equidistant such that
n

i
ui = , ni ≤≤1 . 

Assumption 2: The error term iε  in (1), is an independent and identical (iid) distributed with mean=zero, and variance=

2σ , with ( ) ∞≺2εE , and also, ( ) ∞≺4εE . 

Assumption 3: It is assumed that the maximal distance between any two adjacent observations, i.e.,
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Assumption 4: The nonparametric function ( )uf  in (1) has a bounded first derivative. 

The difference sequences differ according to the type of differences. Three types of difference sequences will be 

considered in this paper as follows. 

The Difference Sequence of Hall Et Al. (1990) 

Hall et al. (1990) proposed a difference sequence called the optimal sequence, they used it in estimating the residual 

variance in nonparametric regression and they found that the optimal sequence { } { }mj dddd ,...,, 10=  can be obtained by 

minimizing the following quantity: 
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And the numerical sequences are computed according to the constraints in (4) as shown in Table (1). These 

sequences will be developed, in this work, for estimating the PLM as “Hall sequences”. 

Table 1: The Computed Difference Sequence of Hall et al., (1990) 

M  Optimal Sequence ( )mddd ,...,, 10  

1 (0.7071,-0.7071) 
2 (0.8090,-0.5000,-0.3090) 
3 (0.1942,-0.2809, 0.3832,-0.8582) 
4 (0.2708,-0.0142, 0.6909,-0.4858,-0.4617) 
5 (0.9064,-0.2600,-0.2167,-0.1774,-0.1420,-0.1103) 
6 (0.2400, 0.0300,-0.0342, 0.7738,-0.3587,-0.3038,-0.3472) 
7 (0.9302,-0.1965,-0.1728,-0.1506,-0.1299,-0.1107,-0.0930,-0.0768) 
8 (0.2171, 0.0467,-0.0046,-0.0348, 0.8207,-0.2860,-0.2453,-0.2260,-0.2879) 
9 (0.9443,-0.1578,-0.1429,-0.1287,-0.1152,-0.1025,-0.0905,-0.0792,-0.0687,-0.0588) 
10 (0.1955, 0.0539, 0.0104,-0.0140,-0.0325, 0.8510,-0.2384,-0.2079,-0.1882,-0.1830) 

Source: Hall et al., (1990). 
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The Difference Sequence of Dette Et Al., (1998) 

Dette et al. (1998) introduced the following difference sequence: 

Table 2: The Computed Difference Sequence of Dette et al., (1998) 

M Ordinary Sequence( )mddd ,...,, 10  

1 (0.7071,-0.7071) 
2 (0.4082,-0.8165,0.4082) 
3 (0.2236,-0.6708, 0.6708,-0.2236) 
4 (0.1195,-0.4780, 0.7170,-0.4780, 0.1195) 
5 (0.0630,-0.3145, 0.6299,-0.6299, 0.3150,-0.0630) 
6 (0.0329,-0.1974, 0.4935,-0.6580, 0.4935,-0.1974, 0.0329) 
7 (0.0171,-0.1195, 0.3591,-0.5985, 0.5985,-0.3591, 0.1195,-0.0171) 
8 (0.0088,-0.0704, 0.2464,-0.4928, 0.6160,-0.4928, 0.2464,-0.0704, 0.0088) 
9 (0.0045,-0.0405, 0.1620,-0.3780, 0.5670,-0.5670, 0.3780,-0.1620, 0.0405,-0.0045) 
10 (0.0023,-0.0230, 0.1035,-0.2760, 0.4830,-0.5796, 0.4830,-0.2760, 0.1035,-0.0230, 0.0023) 
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The sequence dj in (7), is called the ordinary difference sequence by Hall et al., (1990). This sequence is employed 

to reduce the bias in small sample sizes.The ordinary sequence is computed according to the constraints in (4) as shown in 

Table (2). These sequences and will be developed, in this work, for estimating the PLM as “Dette Sequences”. 

Haggag (2019) New Optimal Difference Sequence 

Haggag (2019) proposed the difference-for-difference (DFD) method for estimating the residual variance in nonparametric 

regression, and the corresponding DFD sequence is found to be as follows: 
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and for even m is found to be: 
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where, 

( )[ ]212* +−= mmm             (10) 
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Table 3: The Computed DFD Sequence of Haggag (2019) 

M Dfd Sequence ( )mddd ,...,, 10  

1 (0.7071,-0.7071) 
2 (0.4082,-0.8165,0.4082) 
3 (0.2236,-0.6708, 0.6708,-0.2236 
4 (0.2828,-0.5657, 0.5657,-0.5657,0.2828) 
5 (0.0990,-0.4951, 0.4951,-0.4951, 0.4951,-0.0990) 
6 (0.2223,-0.4447, 0.4447,-0.4447, 0.4447,-0.4447,0.2223) 
7 (0.0581,-0.4068, 0.4068,-0.4068, 0.4068,-0.4068, 0.4068,-0.0581) 
8 (0.1886,-0.3771, 0.3771,-0.3771, 0.3771,-0.3771, 0.3771,-0.3771, 0.1885) 
9 (0.0392,-0.3530, 0.3530,-0.3530, 0.3530,-0.3530, 0.3530,-0.3530, 0.3530,-0.0392) 
10 (0.1665,-0.3330, 0.3330,-0.3330, 0.3330,-0.3330, 0.3330,-0.3330, 0.3330,-0.3330, 0.1665) 

 
The DFD sequences in (8) and (9) are derived to satisfy the two constraints in (4), and shown in table (3). 

When m=1, the DFD sequence in (8) will be the unique sequence jd  in (5). For m=2, the DFD sequence in (8) will 

be the ordinary sequence jd  as shown in Table (2). Also, for m=3, the ordinary sequence and the DFD sequence jd  

are coincident as shown in Table (2). It is found that the ordinary sequence and the DFD sequence jd  differ for m 

>3. (See Tables (2) and (3) 

Estimating the Partially Linear Models Using the Difference approach 

Consider the PLM defined in (1), the generalized difference equation in (3) can be written as: 

( ) ,~~~~ εβ ++= UfXY T              (10) 

where, 

,
~

YY ∆= ,
~

XX ∆= m and εε ∆=~ . ∆ is an (n-m)× n matrix of differences defined as: 





























=∆

m

m

m

m

ddd

dddd

dddd

dddd

......000

0.....000

.......

.......

.......

0...00...0

0....00...

10

210

210

210
 

where d0, d1, d2,…,dm are the differencing weights satisfying the constraints in (4). 

According to assumptions 1:4, the difference model in (10) can be written as: 

,~~~ εβ += TXY               (11) 

The difference estimator of β  is defined as follows: 

( ) ( ) ,
~~~~ˆ 1
YXXXdiff TT −

=β             (12) 

where X
~

is an (n-m)× p matrix of design points on regressors, and Y
~

is an (n-m)× 1 vector of response variable. 

Also, the residual variance can be written as: 
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( ) ( )pmnYPYdiff T −−= /
~~ˆ 2σ ,           (13) 

where P is an (n-m)× (n-m) matrix such that: 

( ) ,
~~~~ 1 TT XXXXIP

−
−=             (14) 

And I is an (n-m) ×  (n-m) identity matrix. The estimator of the parametric components, β, and the residual 

variance will differ according to the type of the difference sequence. Therefore, three difference estimators will be obtained 

and compared as follows: 

• ( )optβ̂  and ( )opt2σ̂  using the optimal sequences in table 1. 

• ( )ordβ̂  and ( )ord2σ̂  using the ordinary sequences in table 2. 

• ( )DFDβ̂  and ( )DFD2σ̂  using the optimal sequences in table 3. 

Theorem 1 

Consider the assumptions 1:4 and the DFD sequence in (8), which computed in table (3), then: 

 ( ) ( )Λ→ ,ˆ ββ NDFD  

Where Ʌ is the covariance of ( )DFDβ̂ defined as: 

 ( ) 1

1

22 21
−

=







 +=Λ ∑ XXT
m

k
kδσ

 

( ) 22ˆ εσσ →pDFD . 

The Proof in Appendix (A). 

A Simulation Study 

Simulation Design 

To study the effect of the difference sequence on the estimation of PLM, three estimators of β will be considered as 

follows: 

• ( )Hallβ̂
 
which uses the sequences of Hall et al. (1990) shownin Table (1). 

• ( )Detteβ̂  which uses the sequences of Dette et al (1998) shown in Table (2). 

• ( )DFDβ̂
 
which uses the sequences of Haggag (2019) shown in Table (3). 

Two sample sizes are used: n=50, and 200. The parameter vector β = (0.2, 0.3, 0.5), and Xj ～ Uniform (0, 1). 

The nonparametric function used in this study is f(u)= 2 Sin (wπu), which used by Zhou et al., (2018), with weights w = 0, 

2, 4, and 6, which represents the smoothness of f(u), and presented as f0, f2, f4, and f6. Also, the design points are chosen 

equidistant such that 
n

i
xi =  for i=1, 2,…,n. the errors are generated such that iε ~ ( )1,0N . The procedures are repeated 

1000 times and the average MSE of each parameter estimator is computed for ( )Hallβ̂ , ( )Detteβ̂ , and ( )DFDβ̂ . Also, 
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the residual sum of Squares for different models are presented. The results are recorded for 240 models: three different 

estimation methods of β, four nonparametric function f(u) according to the value of w, ten difference sequences m, and two 

sample sizes, i.e. (3×4×10×2=240 models).  

Simulation Results 

Simulation Results of the Difference Estimator of Β 

The effect of the proposed difference sequence, introduced by Haggag (2019), on the estimation of the PLM is considered 

and compared with the two difference sequences introduced by Hall et al., (1990), and Dette et al (1998). The results are 

shown in Tables (4): (7) and Figures 1:8, for the sequences 1 ≤  m ≤ 10 and for the sample sizes, n = 50 and n = 200. When 

n=50, best results are obtained, in the form of less MSE, for DFD when 1 ≤ m ≤ 7 and for all values of weight for f(u). Bad 

results are obtained, in the form of large values of MSE, for Hall especially when m = 4, 10, and w = 0, and when m = 4, 8, 

10, and w = 2, 4, 6. Best results are obtained for Dette when m < 7, and for values of w. when n=200, DFD gave best 

results compared to Hall and Dette for m ≥ 4, and for all values of w = 0, 2, 4, and 6. 

Table 4: The Mean Squared Error (MSE) of the Parameter Vector Β, in the PLM, Using ( )Hallβ̂ , ( )Detteβ̂  
 and ( )DFDβ̂ . The Results are Recorded of Order 1 ≤ M  ≤ 10, Four Weights (0,2,4,6) for the Nonparametric 

Function F (U), and Sample Size N = 50 

 

 

Figure 1: The Mean Squared Error (MSE) of the Parameter Vector Β, in the PLM, Using the 
Methods of Hall, Dette, and DFD, With N = 50 and Weight W = 0 For F (U). 
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Figure 2: The Mean Squared Error (MSE) of the Parameter Vector Β, in the PLM, Using 

the Methods of Hall, Dette, and DFD, with N = 50 and Weight W = 2 for F (U). 

 

 

Figure 3: The Mean Squared Error (MSE) of the Parameter Vector Β, in the PLM, 
Using the Methods of Hall, Dette, and DFD, with N = 50 and Weigth W = 4 for F (U). 

 

 

Figure 4: The Mean Squared Error (MSE) of the Parameter Vector Β, In The PLM, Using 
the Methods of Hall, Dette, and DFD, with N = 50 and Weight W = 6 for F (U). 
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Table 5: The Mean Squared error (MSE) of the Parameter Vector β, in the PLM, using ( )Hallβ̂ , ( )Detteβ̂  and 

( )DFDβ̂ . The Results are Recorded for Difference Sequences of Order 1 ≤ m ≤ 10, Four Weights (0, 2, 4, 6) for 

the Nonparametric Function f(u), and Sample Size n = 200 

 

 

 

Figure 5: The Mean Squared Error (MSE) of the Parameter Vector Β, In The PLM, Using the 
Methods of Hall, Dette, and DFD, with N = 200, and Weight W = 0 for F (U). 

 

 

Figure 6: The Mean Squared Error (MSE) of the Parameter Vector Β, in the PLM, Using the 
Methods of Hall, Dette, and DFD, with N = 200, and Weight W = 2 for F (U). 

 



24                                                                                                                                                                                                              Magda M. M. Haggag 

  
Impact Factor (JCC): 4.9784                                                                                                                                                                        NAAS Rating 3.45 

 

Figure 7: The Mean Squared Error (MSE) of the Parameter Vector Β, in the PLM, Using the 
Methods of Hall, Dette, and DFD, with N = 200 and Weigth W = 4 For F (U). 

 

 

Figure 8: The Mean Squared Error (MSE) of the Parameter Vector Β, in the PLM, Using the 
Methods of Hall, Dette, and DFD, with N = 200, and Weight W = 6 for F (U). 

 

Table 6: The Estimated Variance 2σ̂ for the Three Fitted PLM Using Different Parametric Estimation 

Methods ( )Hallβ̂ , ( )Detteβ̂  and ( )DFDβ̂ , and Using the Nonparametric Function F (U) with Four Different 
Weights (0, 2, 4, 6). The Results are Recorded for Difference Sequences of Order 1 ≤ M  ≤ 10, Four 

Weights (0, 2, 4, 6) for the Nonparametric Function F (U), and Sample Size N = 50 
Difference 

Order 
(M) 

( )diffl2σ̂  

Using ( )Hallβ̂  
( )diffl2σ̂  

Using ( )Detteβ̂  
( )diffl2σ̂  

Using ( )DFDβ̂  

 f0 f2 f4 f6 f0 f2  f6 f0 f2 f4 f6 
1 4.12 3.13 2.28 1.59 4.12 3.13 2.28 1.59 4.12 3.13 2.28 1.59 
2 8.30 6.08 4.27 2.89 1.18 1.73 01.14 1.04 1.18 1.73 1.14 1.04 
3 24.5 17.4 12.4 9.51 5.0e- 8.9e- 05.0e- 8.9e- 5.0e- 8.9e- 5.0e- 8.9e- 
4 19.2 13.5 10.1 9.39 11.98 11.98 11.99 12.02 2.21 2.19 2.06 1.78 
5 14.7 8.75 5.05 3.34 13.78 13.78 13.79 13.78 0.90 1.28 1.59 1.65 
6 2.99 0.58 0.18 1.05 31.87 16.16 8.05 5.81 0.14 0.14 0.12 0.09 
7 13.2 5.99 2.80 2.28 12.60 12.60 12.6 12.60 0.03 0.07 0.09 0.06 
8 2.16 0.09 0.19 4.39 12.60 9.78 9.78 9.78 0.08 0.08 0.09 0.12 
9 12.2 4.07 1.75 2.50 6.24 6.24 6.24 6.24 0.13 0.06 0.07 0.16 
10 0.74 0.19 0.26 9.59 2.98 2.98 2.98 2.98 0.41 0.42 0.46 0.49 
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Figure (9–1):  w = 0                                           Figure (9–2): w = 2 

    
Figure (9–3): w = 4                                                                 Figure (9-4): w = 6 

Figure 9: The Estimated Variance 2σ̂ for the three Fitted PLM using Different Parametric Estimation 

Methods, ( )Detteβ̂  and ( )DFDβ̂ , and using the Nonparametric Function f(u) with Four Different 
Weights (0, 2, 4, 6). The Results are Recorded for Difference Sequences of Order 1≤m ≤10, Four Weights 

(0, 2, 4, 6) for the Nonparametric Function f(u), and Sample Size n=50. 
 

Table 7: The Estimated Variance 2σ̂ for the three Fitted PLM Using Different Parametric Estimation Methods

( )Hallβ̂ , ( )Detteβ̂  and ( )DFDβ̂ , and Using the Nonparametric Function F (U) with Four Different Weights (0, 2, 
4, 6). The Results are Recorded for Difference Sequences of Order 1 ≤ M ≤ 10, Four Weights (0, 2, 4, 6) for the 

Nonparametric Function F (U), and Sample Size N = 200 
Difference 

Order 
(M) 

( )diffl2σ̂  

Using ( )Hallβ̂  
( )diffl2σ̂  

Using ( )Detteβ̂  
( )diffl2σ̂  

Using ( )DFDβ̂  

 f0 f2 f4 f6 f0 f2 f4 f6 f0 f2 f4 f6 
1 0.897 1.021 0.958 0.897 0.897 1.021 0.958 0.897 0.897 1.021 0.958 0.897 
2 1.76 1.63 1.50 0.38 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 
3 0.31 0.31 0.31 0.31 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 
4 0.65 0.52 0.40 0.30 0.911 0.911 0.911 0.911 0.045 0.045 0.045 0.045 
5 2.36 2.05 1.76 0.49 1.818 1.818 1.818 1.818 0.156 0.175 0.193 0.212 
6 1.12 0.87 0.66 0.49 1.333 0.917 0.584 0.334 0.046 0.046 0.046 0.046 
7 2.47 2.05 1.66 1.34 4.051 4.051 4.05 4.051 0.021 0.024 0.028 0.031 
8 5.44 4.71 4.08 3.59 4.485 4.485 4.485 4.485 0.009 0.009 0.009 0.009 
9 2.58 2.03 1.57 1.19 4.260 4.260 4.260 4.260 0.003 0.005 0.007 0.009 
10 0.48 0.25 0.10 0.04 3.613 3.613 3.613 3.613 0.001 0.001 0.001 0.001 
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Figure (10–1): w = 0                                                     Figure (10–2): w = 2 

    
Figure (10–3) w = 4                                                       Figure (10–4): w = 6 

Figure 10: The Estimated Variance 
2σ̂ for the three Fitted PLM using Different Parametric Estimation 

Methods ( )Hallβ̂ , ( )Detteβ̂  and ( )DFDβ̂ , and using the Nonparametric Function f (u) with Four Different 
Weights (0, 2, 4, 6). The Results are Recorded for Difference Sequences of order 1 ≤ m ≤ 10, Four Weights 

(0, 2, 4, 6) for the Nonparametric Function F (U), and Sample Size n = 200. 
 
Simulation Results for the Residual Variance Estimator 

The residual variance estimator ( )diff2σ̂  is computed for each method, Hall, Dette, and DFD. By comparing ( )diff2σ̂  

for the three methods, it is found that best results are obtained, in the form of less values of ( )diff2σ̂ , for DFD method. 

Tables (6), and (7), and also Figures (9), and (10) show that DFD method has less values of ( )diff2σ̂ compared with the 

other two methods, Hall and Dette, for all sample sizes and all difference sequences (1 ≤ m ≤ 10). 

CONCLUSIONS 

This paper considers estimating the partially linear model PLM using the difference method. The proposed difference 

sequence which is called DFD method is applied when estimating both the parameter vector β and the residual variance of 

the fitted PLM. The results of DFD method are compared with those of Hall method (Hall et al., 1990), and Dette method 

(Dette et al., 1998). Best results are obtained in favor of the DFD, in the form of less values of the MSE of the estimated β, 

and less values of the residual variance of the fitted PLM. In the future, this method will be developed for other 

semiparametric regression models. 
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Appendix (A) 

Proof of Theorem 1 
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